Pointed Binary Encompassing Trees
نویسندگان
چکیده
We show that for any set of disjoint line segments in the plane there exists a pointed binary encompassing tree T , that is, a spanning tree on the segment endpoints that contains all input segments, has maximum degree three, and every vertex v ∈ T is pointed, that is, v has an incident angle greater than π. Such a tree can be completed to a minimum pseudo-triangulation. In particular, it follows that every set of disjoint line segments has a minimum pseudo-triangulation of bounded vertex degree.
منابع مشابه
Pointed Encompassing Trees
It is shown that for any set of disjoint line segments in the plane there exists a pointed binary encompassing tree, that is, a spanning tree on the segment endpoints that contains all input segments, has maximal degree three, and such that every vertex is incident to an angle greater than π. As a consequence, it follows that every set of disjoint line segments has a bounded degree pseudo-trian...
متن کاملPointed binary encompassing trees: Simple and optimal
For n disjoint line segments in the plane we construct in optimal O(n log n) time an encompassing tree of maximal degree three such that every vertex is pointed. Moreover, at every segment endpoint all incident edges lie in a halfplane defined by the incident input segment.
متن کاملA New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity
Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...
متن کاملCatalan numbers, binary trees, and pointed pseudotriangulations
We study connections among structures in commutative algebra, combinatorics, and discrete geometry, introducing an array of numbers, called Borel’s triangle, that arises in counting objects in each area. By defining natural combinatorial bijections between the sets, we prove that Borel’s triangle counts the Betti numbers of certain Borel-fixed ideals, the number of binary trees on a fixed numbe...
متن کاملProfile and Height of Random Binary Search Trees
The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.
متن کامل